In this video, we’ll build a simple B-tree data structure in Haskell, using a GADT to ensure
that we maintain the B-tree's structural invariant. As in my previous video on Hole-driven
Haskell, we'll use types to guide the development.

Although B-trees come in various sizes, I'll be restricting our attention to the smallest
possible B-tree. I'll refer to this variant as a 2-3 B-tree, though others might use a different
name for the same structure.

We can define a 2-3 B-tree informally by three rules. Firstly, a 2-3 B-tree comprises either
a node with one element and two sub-trees, or a node with 2 elements and 3 sub-trees, or
a leaf containing nothing at all. Secondly, every leaf must be equidistant from the root of a
tree. And finally, data must be ordered left to right.

So what's the motivation for these seemingly arbitrary rules? Well, the third rule means
that we can search for an item within the tree, without back-tracking. Left-to-right ordering
allows us to narrow the search to at most one sub-tree, using just one or two comparisons
with the elements in a node. The first and second rules together mean that each narrowing
is by a factor between one half and one third. As a result, search takes log n time in the
worst case. Finally, the first rule also gives us just enough flexibility to implement some
useful operations, including insertion and deletion, also in log n time.

Now, to represent a 2-3 B-tree in Haskell, we can make a first approximation using a pair
of mutually recursive data types that capture just the first rule. The type N describes the
structure of internal nodes, while T describes the overall recursive structure of the B-tree. |
could have written this as a single data type, but splitting it up like this will make things
clearer later on.

Unfortunately, this definition makes it possible to construct trees like this one which breaks
the second rule requiring all leaves to be equidistant from the root. We'd need something
other than the types to ensure that search doesn't blow out to a linear-time algorithm.

We can do better than this, but before | can show you how, | need to introduce GADT-style
definitions.

Consider the types of the constructors in our definition of T. For example, the Br
constructor is a function that takes an argument of type N a, and constructs a T a.
Whereas our ordinary data definition lists the types of the components of each constructor,
from which the types of the constructors are inferred, a GADT-style definition gives the
type of the constructor itself, and the types of the components are inferred.

Aside from syntax, the important difference between the two styles is that a GADT gives
the result type of each constructor explicitly, whereas the ordinary definition always implies
that all of the constructors' result types are just the same as the type being defined.

So what have we gained? Well, in a GADT, we're allowed to specialise type variables in
the constructor result types. We can use this to encode the second rule, which we
rephrase to say that sub-trees of an internal node must all have the same height.

Now we need to measure the heights of trees, and we'll do this using the standard unary
definition of natural numbers, which says that a natural number is either zero or the
successor of some other natural number. Although this is an ordinary data definition, we're
actually interested in using Z and S as type constructors, and for that, we'll use GHC's

DataKinds extension. An important property of this definition is that Z and S p are distinct
types for any p, and also S p and S q are distinct types if and only if p and q are distinct
types.

We can now add a type index to our tree, to reflect its height. So, rather than describing
trees of some element type, we now describe trees of a particular height and element type.

Naturally, we define a LF as a tree of height zero. And when an internal node has sub-
trees at height n, we define the resulting BR to have height S n. We also need to annotate
the type of an internal node N with the same height as its components, but this only
requires an ordinary Haskell data type.

Now that we've captured the first two rules, we only need to remember to keep our data
ordered. But before we head to the code, let's illustrate the insertion algorithm.

We'll start with a B-tree containing the elements one to three, and we'll insert the element
4. First, we search from the root of the tree, to find the insertion point. This will always be
at the base of the tree.

In this case, there is room to grow the node at the insertion point, so we construct a new
node containing the existing contents and the new element. Remember, these are
immutable structures, so we perform operations by creating new structures that share
parts of the old structures.

Working backwards, we reconstruct the search path, incorporating the new node, and
parts of the old structure wherever possible.

If we no longer need the old version of the structure, it can be reclaimed by garbage
collection.

Now, if we want to insert a 5, we can't extend the node at the insertion point, because it
already has the maximum size. I'll call this an overflow. Instead, we create a pair of nodes
containing 3 and 5, and push the in-between element, 4, up to the next level. We need this
extra element at the next level up, because we have an extra sub-tree at this level, and
sub-trees and elements are always interleaved. Then, to complete the insertion, we create
a new node to combine the pushed element with the existing parent node, and garbage-
collect the unused parts of the old version.

There are no surprises if we insert a 6 into this tree, though, at this point, I'll give up
showing both the old and new versions, and just assume that you understand what it
means to operate on immutable structures.

But now if we insert a 7, we get an overflow at the insertion point, which then causes an
overflow at the parent node. In turn, this pushes the in-between element, 4, up to the next
level. Since there is no parent, this creates a new level, and this how B-trees grow.

Ok, at last we're ready to look at some code. Here, you can see the data types we
previously defined. | have a couple of helper functions, and I've also enabled a number of
language extensions. GADTs is needed for our tree data type, and DataKinds allows us
to use our Nat constructors as types. The others are to support the hole-driven style of
development | described in my previous video.

I'm going to add some dummy types which we'll use to trick GHC into telling us the types
of things in our environment. We'll use Foo to elaborate ordinary data types, and we'll use
M and P for Nat-kinded types.

And I'll add smart constructors for the common cases where we want to construct a Br
node containing a T1 or T2.

Now, having tree-depth information in our types might help us get our implementation right,
but it will cause problems for our clients, who aren't interested in such implementation
details.

We can hide the depth-indices from our clients using an existential type. The GADT syntax
works well for this. We define a type with a single constructor, which takes our depth-
indexed T, and builds a non-indexed Tree to give to the client. Just as important, when we
pattern-match on a Tree, we temporarily get access to our depth-indexed T.

Let's start with the type of insert. For any type a, insert takes an a and a Tree of a, and
gives us back a Tree of a. For searching within a Tree, we also need an Ord relation on a.

Now, for the implementation, I'll delegate to a worker function ins, because | want to
explicitly write its type, including the depth indices. If | deliberately write an incorrect type
for ins, GHC tells me what type it expected, so I'll write that as the type of ins, adding an
explicit forall binder for the depth index n.

Now, T is a recursive structure, so ins will be a recursive function. But see how the
argument to ins carries its depth n in its type. If ins returns a Tree, that depth information
is lost, and this means we won’t be able to recombine the result of a recursive call with its
sibling T structures. So this is no good.

Instead, let’'s make a new intermediate result type Ins, which does carry depth information.
We’ll need a function finish to convert this to a Tree at the top level.

Ok, so what does Ins look like? Remember that one of two things happens when we insert
an element into a sub-tree. In the first case, the inserted element can be accommodated in
slack space somewhere in the sub-tree, which means the result is just a new T at the
same level. I'll call this case Keep. In the second case, the sub-tree overflows, pushing an
element up to the parent, sandwiched between a pair of sub-trees.

Now we can easily write finish, by unwrapping each case and constructing the
corresponding Tree, and note that the second case produces a tree one level higher than
the first. Of course, we’re also going to have to do a similar case analysis every time we
receive an Ins, and it turns out that we’ll always do this immediately after its construction.
That’s going to get tedious, so | think we’ll get a more sensible implementation if we switch
to continuation-passing style. This means passing functions that inline the result of the
case analysis wherever we would otherwise construct an Ins value.

So we do this by converting Keep and Push to function types which take their respective
components as arguments, and ultimately return the result Tree. But rather than returning
Tree explicitly, I'll generalise to a type variable t, because polymorphic types help to
constrain their implementations. The type variable will only be instantiated to Tree of a at
the top level. Now when we call ins, we pass a Keep and a Push as alternative

continuations. The implementation of ins will need to call one of these to construct
something of the type variable t.

For example, at the top level, instead of a call of finish, we pass continuations
corresponding to the two cases of finish. For Keep, the continuation is just the Tree
constructor, and for Push, we construct a new T1 node inside a Tree.

That type-checks, so let’s get rid of the stuff we’re no longer using.

Now, there are two cases ins must handle, one for each constructor of T, so let's stub
them out. An interesting thing happens here. Remember that the values of T have type
indices that depend on which constructor was applied. So when we match on the
constructor, the types of its components are refined. That’s why I've delayed naming the
continuation parameters, because | want to explicitly write their refined types.

Let’s start with an easy case, the LF constructor. I'll delegate this to a subordinate
definition i, so | can write its type. The depth type index gets refined by the pattern match,
so let’s use a dummy Nat, M, to provoke a type error, which tells us this should have been
a Z. That’s great, because it tells us a lot about what these continuations expect as
arguments. We can also write assertions to check that we know how to expand the types
of the continuations, like this.

Now, i needs to produce something of type variable t, and the only things we have that
can do that are the keep and push continuations, so we'll need to call one or the other.
Both continuations require arguments of type T Z a, and looking back at our definition for
T, it's clear that the only thing that has that type is a LF.

So, we have two possibilities. We could keep a LF, but then we've clearly failed to insert
x. Alternatively, we can push something sandwiched between a pair of leaves. GHC tells
us that thing needs to be of type a, and of course, that would be the x that we're inserting.

This makes sense, because push is meant for the case where insertion causes overflow.
And of course, a LF can never contain data, so it always overflows.

I'll just tidy this up a bit, and then we can move on to a more interesting case, the Br
constructor. Again, we’ll delegate, but we’ll pass through the internal node so we can
include it in the assertion of the refined type.

Because this case needs to work at any tree depth, except at the leaves, I'll use variables
p and m for the depth indices of the internal node and continuations. | use separate
variables because I'm not yet sure of the relationship between p and m. Now, although this
type-checks, it’s too general. We won'’t be able to call the continuations, because we can’t
construct arguments of the right types, if p and m are unconstrained.

So, to help us find the right constraint, I'll provoke a type error by attempting to constrain
the variables to our dummy Nats, capital P and M. Essentially, this error tells us that we
want m to be the successor of p. This makes sense, because the components of the
internal node are a level below the node from which they came.

There are two cases for internal nodes, T1 and T2. I'll focus on the T2 case, which is the
more interesting. As before, we can write assertions to expand the types of the
continuations.

Now, to insert x, we compare it to b and d. | have a helper function, select2 to expand this
into the five cases. All five cases need to construct something of type variable t, and it's
clear from the types of what's in scope that we'll have to call one of the continuations to do
that.

In the case where x equals b, we want to replace the T2 node with a new one which has x
in place of b. The type of the new node is N p a. But to construct the required t, we'll need
to call a continuation with a T m a, where m is the successor of p. We can get that by
substituting our smart constructor, and then it's clear from the types that we need to use
the keep continuation. This makes sense, because keep is intended for the case where
there is no overflow.

The case where x equals d is much the same.

When x is less than b, we want to recursively insert into the left subtree, which is a.
Remember, ins takes continuations to handle the result of the recursive insertion, so this is
just a tail call. I'll name the continuations for the recursive call as rkeep and rpush, so |
can ask GHC to tell me their types. And I'll also name the arguments to rkeep and rpush.

We’re buried a little deep here, so let’s take our bearings. We’ve been called to insert x
into a T2 node, and we’ve been given continuations keep and push to call with the result
of the insertion. To perform the insertion, we’ve determined we need to recursively insert
into a, and the recursive call requires us to provide new continuations rkeep and rpush.
One of the continuations we provide will receive the result of the recursive call, eithera T p
a in the case of rkeep, or an a sandwiched between a pair of T p a in the case of rpush.
In both cases, we'll need to use those results to construct suitable arguments to pass back
to one of keep or push. Note that the arguments we pass to keep or push need to be T m
a, which is a level higher than those we'll receive from rkeep or rpush.

So, rkeep handles the case where the recursive insertion does not overflow. In that case,
our T2 node also does not overflow, and we need only construct a new T2 node, replacing
a with the result of the recursive insertion, which is k. As we can see, the type of this new
node is T m a, which is just what we need to pass to keep to obtain the result of type t.

Now, rpush handles the case where the recursive insertion overflows. The result consists
of p, q, and r, which should replace a in the T2 node. Since we also need to keep b, ¢, d
and e, we clearly can’t accommodate everything in a single node.

What can we do? We could construct two layers of T1 nodes, but when we check the type,
it's a level too high for either of the continuations. But the inner T1 nodes are at the right
level, so we have exactly what we need to pass to push, along with the in-between
element. Again, this makes sense, because if the recursive insertion overflows, our T2
node, which is already full, must also overflow.

Now if we tidy up, inlining rkeep and rpush, it’s easy to follow the pattern to complete the
other two sub-cases.

So now we've completed the T2 case. The T1 case is similar, so you can either attempt
that yourself, or find the code via the companion article.

Now let’s look at deletion. This is more complicated than insertion, and we’ll need a couple
of tricks to make our types work. In return, the types work even harder to help us get this
right. But first, let’s look at some informal illustrations of the algorithm.

We'll start with this 7-element tree, and we'll delete the element 3, which happens to be at
the base of the tree. Remember, for insertion, we had to deal with overflow. In contrast,
when we delete this element, we have an underflow, which we handle by pulling an
element from the parent node. In turn, this causes an underflow in its parent node, which
pulls from the root node, causing the tree to shrink by one level.

Now, just as we always inserted at the base of the tree, we also always delete from the
base of the tree. So what do we do when the element we want to delete is not at the base
of the tree?

In this case, we simply replace the element to be deleted, with its immediate predecessor
or successor, which will always be at the base of the tree. It doesn't matter which, so I'll
just choose the predecessor. This replacement maintains the left-to-right order, and allows
the deletion to proceed from the base of the tree.

This means that deletion is a two-phase operation. We have a search phase which uses
the usual comparisons to find the element to be deleted, and a replace phase, which
locates its immediate predecessor. The latter simply traverses to the right-most element of
the sub-tree to the left of the element to be deleted.

We perform the replacement, and then proceed with the deletion as before. Here, we can
also see what happens when the sibling of an underflow is full. In this case, we get a
rotation instead of a pull. If you like, you can think of a rotation as a pull, which is then
followed by an overflow that occurs when the pulled element tries to combine with the full
sibling.

Now, there are a couple of other cases that arise during deletion. However, one of the
things I'm trying to demonstrate here, is that when we make good use of types, it's enough
to have an understanding of the general shape of the algorithm. We don't need to fully
catalog all the cases, because the types will show us the details.

Ok, so let's implement delete. The type of delete is the same as insert, and as before
we’ll delegate to a worker function, using continuation passing style. Remember, deletion
occurs in two phases: search and replace, so we start with a tail-call to the search phase.

The type of the search worker is similar to the ins worker, except now we have to deal
with underflow instead of overflow, so our second continuation will be a Pull instead of a
Push. We don’t quite know what Pull looks like, but it is a continuation, so it must be a
function returning t. For now, we’ll just assume that it takes an argument of some type
Shrunk n a, which we’ll elaborate later. At the top of the Tree, the Keep continuation will
just be a Tree constructor, as before, and the Pull continuation will be some function,
shrink, which takes a Shrunk n a to a Tree a.

This time, | won't bother to delegate any deeper than this, so there are three cases for
search to handle. However, I’'m going to ignore the T2 case, since it doesn’t add anything
particularly interesting. You can either implement it yourself, or find the code in the
companion article.

The LF case is easy. If we're still in the search phase when we hit the bottom of the tree,
there is nothing we need to delete, so we just keep a LF. In fact, as we'll see later, the
types actually prevent us from doing anything else.

In the T1 case, we compare x with b, and split into three sub-cases, all of which need to
construct something of type variable t. When x is less than b, we continue the search
phase in the left sub-tree, which is a. If that doesn’t underflow, we keep a new T1, which
we construct by replacing a with the result of the recursive search. We’'ll figure out what to
do with underflow later. And the case where x is greater than b is similar.

Now, when x is equal to b, we've found the item we need to delete, so we enter the
replace phase.

Remember, to keep the tree ordered, we need to replace the deleted item with its
immediate predecessor, so we can handle the deletion from the bottom of the tree. We find
the predecessor by traversing to the right-most element of the left subtree, which means
we’ll start the replace phase with a.

The replace phase will also have alternative Keep and Pull continuations. The Keep
continuation needs to know what replacement to use for b, so we’ll call the replacement r,
and include it as an additional argument to the continuation. The Pull continuation will also
need an extra argument for the replacement, but we’ll otherwise leave this to later.

So now in the type of repl, we need to add the extra argument to the types of the
continuations, which we can do like this.

And now we run into a problem. When we try to implement the LF case, we’re stuck. To
construct a t, we need to call either the Keep or Pull continuation, and both of them
require a replacement argument of type a. But we don’t have anything of type a, except of
course X, which is what we’re supposed to delete!

To see where we went wrong, rewind to where | said that when the search phase found
the item to delete, the replace phase would select the predecessor by finding the right-
most element of the left sub-tree. But of course, that only makes sense if the left sub-tree
is non-empty. If the left sub-tree is just a LF, then there is no need for a replace phase.
We’'re already at the bottom of the tree, so we can just start the deletion from where we
are.

However, to avoid an extra case analysis, we’ll call repl anyway, and just pass through the
result that repl should return if it finds a LF. In this case, if a and ¢ are leaves, and we
delete b, our T1 node will underflow, so we’ll need to pull, though we’re not yet sure what
that means.

Now, the result repl needs is of type t, so that’s also the type of the extra argument. If you
like, you can think of this as a nullary continuation. And it’s this argument that repl returns
if it finds a LF.

When repl finds a T1 node, it seeks the rightmost element, immediately recursing into the
right sub-tree, which is ¢. If the recursive call doesn’t underflow, we keep a new T1 node,
in which we replace ¢ with the result of the recursive repl. Note that the replacement for
the deleted item is passed through as an invisible extra argument.

Again, we’ll defer thinking about underflow. The third argument to the recursive call is for
the case when c is a LF. In that case, a must also be a LF, and b must be the immediate
predecessor of the deleted item. So we pull, though we’re not yet sure what, but we do
pass b as the second argument, to replace the deleted item.

So, at last, we're forced to figure out the Shrunk data type. Looking at the Pull
continuations, it seems clear that a Shrunk value received from a recursive call must
contain all the elements of the sub-tree recursed into, except for a single deleted element.
If the recursive call had not underflowed, the Keep continuation would have been called,
so we know that the Shrunk value is necessarily smaller than that sub-tree.

At the top of the tree, an underflow should result in a tree which is one level shorter than
the original tree. Compare that with the overflow case in insert, which results in a tree one
level higher. So, essentially, a Shrunk n a should just be a T (n-1) a. Now, we don’t have a
predecessor operation for our type-level Nat numbers. We could construct one, but as it
turns out, we don’t need to. In fact, it's best if Shrunk Z a is uninhabited, because this
ensures that deletion from an empty sub-tree is handled by the Keep continuation. So, if
we only need to consider Shrunk (S n) a, then it’s contents are just T n a.

We can express this by defining Shrunk as another GADT with a single constructor H that
takes a T n a to Shrunk (S n) a. To map this back to a Tree, we just rewrap the contents.

Note the type of the shrink mapping. It takes a Shrunk n a, not a Shrunk (S n) a. If we try
the latter, the program is rejected, because search requires a Pull continuation for any n,
not just S n. But how can this be, if we can only construct a Shrunk (S n) a? The point is
that it’s entirely possible to construct a function that takes a Shrunk n a for any n.
However, we'll only be able to apply this function to those Shrunk n a that we can actually
construct, which is just those Shrunk (S n) a. Remember that pattern matching on a
GADT refines the type of that branch, so when we match the H constructor, the n gets
refined to S n anyway. It’s exactly this property of GADTs that ensures that our Pull
continuation can only be applied in the case that the recursive call has actually shrunk the
sub-tree. It's also what prevents us from using pull when search finds a LF.

So, now we can implement our Pull continuations, which need to combine the Shrunk
value with the siblings of the sub-tree recursed into. In the case where x is less than b, we
need to combine p with b and c. I'll call this merging, and note that it’s asymmetric, since p
and c¢ have different types. Thus, we’ll have left and right merges for the T1 case,
depending on whether p replaces the left or right sub-tree. For this case, we’ll have a mrgl
of p, b and c. And for the case when x is greater than b, we’ll have a mrgr of a, b and p.

Now, when x equals b, we’ll have another mrgl, since we start the repl phase in the left
sub-tree. We use the replacement value r instead of b, because b is being deleted, so the
values we merge are p, r and c.

So, what is the type of mrgl? It takes a Shrunk p a, an a, and a T p a, and as with all our
continuations, returns a t. Here, p is one level below n, so we can express that in a
constraint. And mrgr takes the same types in reverse order.

The cases that mrgl has to consider are those of its third argument, of type T p a. When
the argument is a T1 node, we have a, ¢, and e, which are T nodes at the level below p,
interspersed with b and d, which are just values of type a. These will all fit in a single T2
node, but do we keep or pull? The types can tell us. If we try to keep, we can see that

we’re at the wrong level, even though GHC has renamed the type variable. This makes
sense, because the components here are two levels below the T1 node where we started.
We dropped one level when we made the recursive call to search, and another when we
pattern-matched on the arguments of mrgl. So, instead, we need to pull, and since pull
expects a Shrunk value, we also need to wrap the T2 node in an H constructor.

When mrgl finds a T2 node, we have a, ¢, e, and g, which are T nodes at the level below
p, interspersed with values b, d, and f. We can't fit those into a single node, so we need to
split into two layers of T1 nodes. This time, we’ve regained the two levels that we dropped,
so it makes sense that pull is rejected, but keep is accepted.

Now, what about the case when mrgl finds a LF? This case actually makes no sense,
because mrgl only occurs in the context of an underflow, and an underflow cannot
originate in a row of leaves. Fortunately, the types actually prevent us from implementing
this case. Remember that pattern-matching on a GADT refines type variables. Matching
on the H constructor refines p to S of some q, while matching on LF refines p to Z. Of
course, p cannot be both S q and Z, so this is a type error. Similarly, it would also be an
error to attempt to call mrgl with values that would have matched this case.

And so we just leave this case out. Unfortunately, if we enable warnings, GHC will still
complain about an incomplete pattern match, even though it complains harder if we
attempt to complete it. At least for now, that’s just something you have to live with if you
work with GADTs in Haskell, though it might improve in a future release of GHC.

The implementation of mrgr is much the same as mrgl. We just have to reverse
everything.

Now, repl also has a Pull continuation. Since repl recurses into the right sub-tree, this is a
mrgr of a, b, and p. The type of this mrgr is similar to the type of mrgr in the search
phase, except this mrgr takes an extra argument for the replacement value. However,
despite the different type, the implementation is exactly the same, because in the context
of repl, keep and pull also expect this extra argument. Obviously, we should factor out
this common code, and that just requires us to pass the keep an pull continuations
explicitly, rather than capturing them from the environment. To account for the different
types, we just generalise the continuations' result type.

Now, all that remains is to figure out what to pass as the third continuation argument in
each call to repl. Remember, this is the nullary continuation that is only used when repl
finds a LF.

Within search, this occurs when we find the item to be deleted at the bottom of the tree, so
we want to drop that item, and pull an empty tree, or in other words, pull an H LF.
Although this is correct for the case we’re interested in, it has the wrong type for all other
cases, because pull expects a Shrunk n a, not always a Shrunk (S Z) a. So where can
we find a value that is LF in the case we care about, and otherwise has the right type? Of
course, this value is only used when a is a LF, and a always has the right type, so we can
just use a instead of LF.

If you just raised an eyebrow, yes, | agree that this is a bit tricky, and usually we don't like
tricky code, but the only alternative I've found so far is to put data into the leaves, and that
causes the code to blow up by about a factor of two. I'm not sure which is worse, but | do

know which | can fit onto your screen. Please leave a comment if you can show me a
better way!

Similarly, within repl, this case occurs exactly when we have just found the immediate
predecessor, b, of the item being deleted. We're already passing b back as the
replacement for the deleted item, and since that leaves us with nothing else, we need to
pull a LF, but to satisfy the type, we use a instead.

To complete the implementation of delete, we would need to fill in the T2 cases for both
search and repl, but since that’s just more of the same, I'll leave the video here. You can
try to finish this yourself, or find my code via the link shown at the start of the video.

So, hopefully, you’ve been able to see that judicious use of types can not only guard
against a larger class of errors, but can also help us to find the right implementation. And,
for the most part, the types don’t get in our way.

Note that our GADT only specifies the B-tree structure invariant. It doesn’t specify the
order invariant, and it certainly doesn’t ensure that our functions actually perform insertion
and deletion. We’'ll still need to test for those properties. Perhaps, in a future video, I'll look
at ways to guarantee the latter properties using types.

